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Abstract Virtual reality (VR) offers an artificial, com-
puter generated simulation of a real life environment.
It originated in the 1960s and has evolved to provide
increasing immersion, interactivity, imagination, and
intelligence. Because deep learning systems are able to
represent and compose information at various levels in a
deep hierarchical fashion, they can build very powerful
models which leverage large quantities of visual media
data. Intelligence of VR methods and applications has
been significantly boosted by the recent developments
in deep learning techniques. VR content creation
and exploration relates to image and video analysis,
synthesis and editing, so deep learning methods such
as fully convolutional networks and general adversarial
networks are widely employed, designed specifically to
handle panoramic images and video and virtual 3D
scenes. This article surveys recent research that uses
such deep learning methods for VR content creation
and exploration. It considers the problems involved,
and discusses possible future directions in this active
and emerging research area.

Keywords virtual reality; deep learning; neural net-
works; 360◦ image and video virtual content

1 Introduction
Virtual reality (VR) is an artificial, computer
generated simulation of a real life environment.
It immerses the viewer into a computer-generated
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3D environment in which they can explore and
interact. Over the near 60-year history of VR,
the availability and flexibility of displays and other
devices has increased, facilitating the prevalence of
VR. Starting from 2014 when consumer-grade head-
mounted displays (HMD) such as Oculus Rift [1]
and HTC Vive [2] became available for commercial
use, VR has entered a new era. This technology has
now reached the critical mass of technical maturity
and content pervasiveness needed to drive the growth
that will embed VR within the multiple sectors of
the economy, such as entertainment, education, and
tourism.
A VR environment can be created from real life

images/videos, or computer-generated 3D models and
scenes. The key aspects of providing an immersive
VR experience to users are the fidelity of the VR
content, and the realism of VR interaction; we
need to utilize artificial intelligence approaches to
achieve high-quality VR environment construction,
to analyze the rich information in VR content, and
to properly understand user actions. Recently, AI
technologies have leapt forward with the development
and application of deep neural networks. The
continuously evolving capabilities of deep learning
systems has catalyzed their uptake in VR research,
especially in VR content creation and exploration
tasks. Because deep learning systems are able
to represent and compose information in a deep
hierarchical fashion with simple non-linear building
blocks, they can learn very powerful models from
the large quantities of visual media data currently
available today. Deep learning methods are likely to
become mainstream in the coming years in several
sub-fields of VR research.
VR content creation and exploration have attracted

research interest in recent decades. VR content can
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Fig. 1 Taxonomy of deep learning-based VR content creation and exploration techniques in this paper. Representative works are listed in
colored boxes.

be computationally generated from either normal
field-of-view (NFOV) photos and videos using image
stitching [3] and scene reconstruction [4] techniques,
or 3D modeling [5] and scene composition [6] methods
with a rendering process [7]. After that, the
virtual scenes need to be analyzed and understood
via computer vision algorithms such as object
detection and scene parsing to provide semantic
information for further object-aware or scene-aware
manipulation and rendering. A virtual scene can
be presented to the user using normal 2D displays
or head-mounted displays (HMDs) for interactive
exploration. Meanwhile, the user’s face, pose,
gesture, and/or gaze can be recorded, recognized,
and tracked by surrounding sensors for accurate and
intelligent interaction with the virtual environment.
Deep learning methods can be integrated into
each stage of the whole pipeline to improve the
capability, effectiveness, and efficiency of VR systems,
while reducing the amount of labor, expense, and
redundancy.
Deep learning-based methods have been investigated

and successfully applied to many computer vision

tasks for visual media, analyzing images, videos,
and geometric models and scenes. For example,
single-stage real-time object detection YOLO [8]
and two-stage instance-level Mask-RCNN networks
[9] can detect and recognize objects in an image;
segmentation and parsing [10–12] networks were
invented to assign pixel-wise category labels to images
to understand scenes; scene graph creation networks
[13, 14] further understand possible relationships
between objects. To manipulate image content, style
transfer [15–17] and image-to-image translation [18–
21] networks have been developed. Nevertheless,
VR content is much more complex to analyze
and manipulate than normal photos and videos
for two reasons: firstly, the resolution and field-
of-view of 360◦ images and videos presented in
VR are much larger, and so include more scene
content. The presence of 360◦ image and video
using latitude–longitude projection can also produce
severe distortion. Secondly, virtual content is
usually experienced immersively with head-mounted
displays, where editing artifacts attract much greater
visual attention or lead to uncomfortable viewing
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experiences. Higher quality is required of the content
generated for VR than for normal media. To
this end, deep learning methods for VR content
creation and exploration are specifically designed with
larger receptive fields for spatial-awareness and high-
efficiency for handling 360◦ video data.
In this survey, we cover recent papers that leverage

deep learning methods for VR content creation
and exploration. The survey is structured as
follows: Section 2 considers deep models for VR
content creation. Section 3 reviews recent papers
in VR content analysis. Section 4 describes recent
deep learning work on VR content exploration
and interaction. Section 5 introduces VR content
manipulation methods using deep neural networks.
Finally, Section 6 draws conclusions and discusses
possible future directions and trends in this active
research field.

2 VR content creation with deep learning
The creation of high-fidelity VR content forms the
foundation of immersive VR experience. Generally,
two types of sources are employed for computational
VR content creation: real-life images and videos,
and objects and scenes created automatically or
interactively using computers. Deep neural networks
are utilized in 360◦ image and video generation, and
scene composition. Here, we review representative
techniques and recently proposed algorithms.

2.1 Panoramic image and video creation
Panoramic image and video, or 360◦ image/video,
synthesized from real-life photos, are typically
used for consumer-level VR applications [23], and
can be viewed even using mobile phones. Raw
images and video captured by various devices are
seamlessly stitched to generate a panoramic scene
for VR presence. Normally, 360◦ images presented
in VR are stereoscopic. Thus solutions for capturing
and rendering stereo imagery have been proposed
with both fixed camera arrays [24–27] and casual
photography [28–30]. The raw images and video
are then warped and stitched to make a 360◦

panorama [31] for VR display. The normal pipeline
in conventional panorama stitching techniques [3, 32–
34] consists of 2D transformation estimation and
seamless stitching with blending [35]. However,
they cannot produce acceptable results if correctly

matched feature points are lacking. Deep learning-
based sparse and dense image matching methods
have been proposed to overcome that limitation. For
sparse matching, deep features [36, 37] are used for
effective correspondence matching. Deep homography
estimation methods [38–40] take source and target
images as input, and output displacement vectors
at image corners. An unsupervised approach for
homography estimation was proposed in Ref. [40],
which uses a triple loss to ensure content awareness.
Correspondence prediction on pixels or mesh cells
can be utilized to solve the local content matching
problem for transformation estimation. Ye et al. [41]
presented the DeepMeshFlow model to predict a
sparse motion field from a pair of images with
associated motions at mesh vertices. For dense
matching [42], various optical flow estimation
methods using deep learning have been investigated
[43, 44]. To learn more, we refer readers to a survey
of optical flow estimation using convolutional neural
networks (CNN) [45].
Recently, unstructured video stitching methods

have been explored [22, 46, 47]. Lai et al. [22]
proposed a neural network for video captured by a
linear camera array (see Fig. 2). It casts the stitching
problem in terms of spatial interpolation, and presents
a pushbroom interpolation layer with the assistance
of flow estimation to seamlessly stitch multi-view
videos.
Obtained panorama content with a 360◦ field-

of-view sometimes needs to be further processed,
for example due to unsuitable camera setup during
data acquisition: e.g., if the cameras are tilted
when capturing data, the stitched result will be mis-
oriented. Jung et al. [48] proposed a CNN-based
method to predict the elevation and azimuth angles of
the up-vector for a given VR image. To support model
training, a large scale dataset of VR images with
different orientations was generated, by combining
random rotations and resizing of high resolution VR
images from the SUN360 dataset [49].

2.2 3D reconstruction and image-based
rendering

Geometric information is missing in real-life images
and videos. To support interactive navigation and
exploration in certain VR applications, 3D geometry
needs to be reconstructed from the raw data either
implicitly or explicitly. Also, image-based rendering
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Fig. 2 Video stitching for linear camera arrays using CNNs with a pushbroom interpolation layer. Reproduced with permission from
Ref. [22], c© The British Machine Vision Association 2019.

(IBR) techniques can be used to faithfully synthesize
or enhance images from novel viewpoints. The
reconstructed and rendered scene can be interactively
experienced with HMDs and controllers. Here, we
review existing deep learning-based work for several
major categories of reconstruction methods, namely
for general scenes, human faces, and human bodies.
2.2.1 General scenes
The complexity of geometric data and the availability
of large datasets make it tempting and very desirable
to resort to machine learning techniques. To improve
the reconstruction of earlier 3D geometry estimation
methods [50, 51], 3D neural networks [52] were
proposed to reconstruct dense 3D point clouds from
unstructured photo collections. Using point clouds,
Delaunay tetrahedralization methods [53, 54] can
be used to create mesh-based models. Xi and
Chen [55] proposed a multi-view regularization-based
method for piecewise planar scene reconstruction.
Given multiple images from different viewpoints,
this method recovers planar segments and a depth
map under a planar shape constraint for each
image using CNNs, and then composes the above
features to reconstruct the 3D scene with multi-view
regularization. Various scene reconstruction methods
have been evaluated in a benchmark [56].
Image-based rendering methods take images and

videos as input to create realistic scenes from
novel viewpoints. In early work, the unstructured
lumigraph rendering [57] represents the scene as
a simple geometric proxy, and then re-projects
and blends the input images using new viewpoints.
Several studies investigated CNN-based methods in
this field. Flynn et al. [58] proposed the end-
to-end DeepStereo framework with two towers of

layers for depth and color prediction. DeepStereo
directly produces the pixels of the unseen view using
pixels from neighboring views. Zhou et al. [59]
proposed a network to predict appearance flows of 2D
coordinate offset vectors to reconstruct a new target
view, and further generalized it to combine multiple
single-view predictions. DeepView [60] represents
the scene as multi-plane images (MPIs) learned with
gradient descent. The method is aware of occlusion
and improves results on challenging scenes with thin
structures and high depth complexity. Hedman et
al. [61] proposed DeepBlending, a CNN-based IBR
blending system with per-view geometry refinement
and geometry-aware mesh simplification for quality
improvement. Given a set of photos from several
views, the proposed blending network takes selected
warped view mosaics and a global mesh rendering,
and outputs weights for blending each pixel from the
views (see Fig. 3). Multi-view image fusion [62] was
proposed to fuse misaligned photos from different
camera sensors. It can transfer details from a high-
quality DSLR image to images taken by a VR180
camera [63]. It then learns to predict optical flows at
different granularities with a novel cascaded feature
extraction stage, and fuses features hierarchically.
2.2.2 Faces
3D reconstruction of humans is an important topic
in VR content creation. The face is the most
significant visual aspect of a human in visual
perception, as it can convey messages, identity,
emotion, and intent of humans [65]. While traditional
methods can render highly realistic faces, such
methods are not widely applied in many VR
application scenarios, as they depend on physically
accurate estimation of geometry and shading models
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Fig. 3 The network architecture of DeepBlending for free-viewpoint image-based rendering. Reproduced with permission from Ref. [61],
c© Association for Computing Machinery 2018.

considering colors, facial landmarks, and edges, which
involves high computational costs. If estimation of
facial parameters is not accurate, the perceptual
quality of the face rendering results will be degraded.
On the other hand, traditional methods usually
require multiple images of the same person to achieve
sufficient smoothness and consistency. Deep learning
methods have made remarkable progress in solving
the above problems in real time.
Face reconstruction and modeling methods can be

classified into two categories according to the type of
input: one uses lightweight setups that mostly work
with a single monocular RGB or RGB-D camera, and
achieve real-time performance by making a trade-off
between face reconstruction quality and speed [65],
while the other uses sophisticated multi-view setups
with off-line processing to provide higher quality face
modeling.
Typically, CNN-based deep neural networks are

widely used for modelling a face from monocular
input. Tran et al. [66] proposed a method for 3D
face reconstruction from a single image using CNN
to regress the shape and texture parameters with a
discriminative 3D morphable face model (3DMM)
[67]. Hu et al. [68] presented an architecture
that can model a complete 3D head with hair from
a single image by integrating the latest methods
of facial segmentation, shape modeling, and high-
fidelity appearance inference. They also use a deep
CNN for hairstyle retrieval. Jackson et al. [69]
proposed a CNN architecture using a novel volumetric
representation that can reconstruct the entire 3D
facial geometry for arbitrary poses and expressions
of a face. In order to derive the reconstructed

face shape from a single image in a coarse-to-fine
manner, Richardson et al. [70] proposed an end-to-
end CNN framework containing two sub-networks.
Their first sub-network, CoarseNet, provides coarse
facial geometry recovery. It is then followed by
FineNet for facial feature refinement. Dou et al. [71]
introduced an approach for end-to-end 3D face
reconstruction (UH-E2FAR) from a single image.
With a multi-task loss function and a fusion module,
neutral 3D facial shape and expressive 3D facial shape
are reconstructed. Tewari et al. [64] proposed a
novel model-based deep convolutional autoencoder to
reconstruct the face from a single image (see Fig. 4).
Their proposed network combines an encoder for
semantic parameter extraction (e.g., pose, shape,
expression, skin reflectance, and illumination) and a
differentiable model-based decoder. Kim et al. [72]
invented a deep convolutional inverse rendering
framework, InverseFaceNet, for joint estimation
of facial pose, shape, expression, reflectance, and
illumination from a single input image, in real
time. By using a novel loss function, InverseFaceNet
directly measures model-space similarity in parameter
space, which significantly improves reconstruction
accuracy. Tran et al. [73] presented a deep
convolutional encoder–decoder framework to provide
detailed 3D reconstructions of faces viewed under
extreme conditions (including occlusion) by using
bump maps to represent the coarse 3D face shape with
wrinkles. To provide high fidelity texture details in
the reconstructed face model, GANFIT was proposed
with GANs to train a very powerful generator of
facial texture in UV space; it is integrated in 3DMMs
fitting approach [74].
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Fig. 4 Model-based neural network for unsupervised monocular reconstruction. The proposed face autoencoder enables unsupervised
end-to-end learning of semantic parameters including geometry, illumination, expression, etc. Reproduced with permission from Ref. [64],
c© Institute of Electrical and Electronics Engineers 2017.

Due to variations in input image quality and
insufficient facial information, it could be challenging
to accurately reconstruct a 3D face from a single
image. Therefore, some authors have suggested
reconstructing face models using multi-view face
images. Lombardi et al. [75] presented a deep
appearance model for rendering a human face using
a data-driven rendering pipeline. It utilizes a multi-
view capture setup to learn a joint representation
of the facial geometry and appearance, and then
uses a deep variational autoencoder for predicting
vertex positions and view-specific textures. Dou and
Kakadiaris [76] proposed a recurrent model for multi-
view 3D face reconstruction. They use a subspace
for the 3D facial shape representation and a deep
recurrent neural network which consists of both a deep
convolutional neural network (DCNN) and a recurrent
neural network (RNN). The DCNN extracts the
identity and expression of the face from each image
alone, while the RNN fuses features related to identity
from the DCNN and aggregates identity-specific
contextual information. Wu et al. [77] proposed
an approach to predict 3DMM [67] parameters with
an end-to-end CNN from a set of multi-view facial
images as input, which can generate the minimized
photometric reprojection error between each observed
image and the generated image.
2.2.3 Bodies
Human body reconstruction is used for avatar
creation and animation. CNN-based methods have
been proposed to leverage parametric human body
models, starting from single or multiple photos or
RGBD images. Cao et al. [78] introduced a cascaded
3D fully convolutional network to reconstruct implicit
surface representations from noisy and incomplete
depth maps in a two-stage process (see Fig. 5). Huang
et al. [79] proposed a multi-view CNN for sparse human
performance capture. The method maps 2D images
to a 3D volumetric field encoding the probabilistic

distribution of surface points of the captured subject.
From the 3D volumetric field, a clothed human body
can be reconstructed at arbitrary resolutions. Recently,
single image body reconstruction methods have
been proposed. Generalizing convolutional methods,
the image-guided volume-to-volume translation
network DeepHuman [80] learns a dense semantic
representation from a skinned multi-person linear
model to reconstruct a human from a single image.
Different scales of image features are fused in 3D space
via volumetric feature transformations to recover
details of the subject’s outer surface geometry. Details
on the frontal areas of the outer surface are further
refined via a normal map refinement network. Pixel-
aligned implicit functions [81] have been explored to
represent local alignment of pixels from 2D images
to a global context for the target 3D object. With
such a representation, highly comprehensive clothed
humans with detailed hairstyles can be inferred with
both 3D surface and texture from single or multiple
images.

2.3 3D model manipulation
The aforementioned methods reconstruct geometry
from real-life images and videos. In the cases where
the environment is designed to respond to user input,
or a customized VR environment needs to be provided,
we need further 3D model manipulation methods.
These include shape deformation and transformation;
they are also widely used in animation. Deep learning-
based methods have already surpassed traditional
methods in some specific domains, which shows
the feasibility of a machine learning to deform and
transform shapes.
Research has provided evidence that compressing

the shapes to a latent feature space is beneficial
for later manipulation and can lead to improved
results. Tan et al. [83] proposed a CNN-based auto-
encoder which can deal with meshes with irregular
connectivity. The method first uses an effective
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Fig. 5 Two-stage 3D-CFCN architecture for 3D body reconstruction from low quality raw depth scans. An intermediate representation is
produced with a fused low-resolution TSDF volume for stage 1 of the 3D-FCN. Then the network regresses a complete low-resolution TSDF and
predicts TSDF patches for further refinement. Next, for each patch to be refined, the corresponding block is taken from a fused high-resolution
input TSDF to infer a detailed high-resolution local TSDF volume that can substitute for the corresponding block in the regressed TSDF for
quality improvement. Reproduced with permission from Ref. [78], c© Springer Nature Switzerland AG 2018.

representation [84] for the deformation of shapes, and
then utilizes a CNN-based auto-encoder to encode
the deformation representation into the latent space.
After that, sparsity regularization is introduced to
help identify sparse localized deformation by applying
it to weights in the fully-connected layers. These
enable the method to extract intuitive localized
deformation components while being insensitive
to noise. Meng et al. [85] introduced a voxel
variational autoencoder (VAE) network for robust
point segmentation which considers both spatial
distribution of points and group symmetry. The
network first transforms an unstructured point
cloud to a voxel grid, and employs radial basis
functions which are symmetric around point samples
to handle sparse distributions of points. A kernel-
based interpolated VAE architecture is then used
to effectively encode the local geometry within each
voxel. Robustness is further enhanced by extending

the group equivalent CNN to 3D; this improves the
expressive capacity without increasing the number of
parameters. Gao et al. [82] proposed an approach
based on generative adversarial networks (GAN)
to automatically transfer deformations between
unpaired shape datasets. Source and target shapes
are first encoded to their own latent spaces by two
convolutional VAEs respectively to get more compact
and effective representations. Afterwards, GAN is
employed to find the mapping between source shapes
and deformed target shapes in the latent space. To
make the mapping more reliable, reverse mapping
from target shapes to source shapes is also utilized
(see Fig. 6). Wu et al. [86] presented SAGNet which
is a structure-aware generative model that enables 3D
shape generation with separate control over geometry
and structure.
Motivated by recent advances in analyzing data

using neural networks, GANs have been used to

Fig. 6 Automatic unpaired shape deformation transfer. (a) Architecture of the proposed VC-GAN network for deformation transfer. (b)
Convolutional variational autoencoder. Reproduced with permission from Ref. [82], c© Association for Computing Machinery 2018.
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analyze and encode latent relationships between
geometry and structure instead of performing
unsupervised training with geometric models. During
analysis, two branches for structure and geometry
exchange information between them, which allows the
system to learn the dependency between structure
and geometry. Yin et al. [87] introduced LOGAN,
a general-purpose shape transformation learning
method based on unpaired domains. It includes
an auto-encoder and a translator. The CNN-based
auto-encoder is designed to encode shapes from the
two unpaired domains in a common latent space;
latent codes are created to represent multi-scale
shape features. The GAN-based translator is devised
to perform transformations by operating in the
latent space. It contains both an adversarial loss
to enforce cross-domain translation and a feature
preservation loss to help preserve features during
translation. Gao et al. [88] presented SDM-NET,
a deep generative neural network that can produce
structured deformable meshes. It includes a two-level
variational auto-encoder, where one level learns a
deformable model of part geometries and the other
level learns the part structure of a shape collection
and part geometries to ensure coherence between
global shape structure and surface details. Its
inspiration comes from the observation that a 3D
shape can be decomposed into a set of parts even
though the overall structure of the 3D shape could be
complex, and furthermore, each part is homeomorphic
to a box, and so can be recovered by deforming the box.

2.4 3D scene composition
3D virtual scenes that allow daily human activities
are in high demand for various VR applications, e.g.,
interior design and 3D game production [89]. Their
popularity has been constantly increasing. Although
specialized knowledge is required to design a scene,
deep neural networks can learn certain patterns to
assist designers. The literature takes two different
approaches for indoor and outdoor scene composition.
For indoor scenes, handling the various types of

indoor objects is the main challenge. Fu et al. [89]
presented an indoor scene synthesis system that
adaptively creates 3D scenes using only a small
number of object categories specified by users. Since
it requires some professional knowledge to design the
layout, they exploit a database of 2D floor plans
to learn layout examples for scene synthesis and

extract object relationships to ensure the functional
plausibility of synthetic scenes. They used an activity-
associated object relation graph which captures
relations between objects to enable adaptive object
suggestion. Wang et al. [90] presented a system
based on CNNs for synthesizing indoor scenes from
scratch. Since a large dataset of 3D scenes has become
available [91], they are able to train their CNN model
to select and place objects to generate a room scene
by iteratively adding objects.
Although convolutional networks cannot directly

work in 3D space, they utilize the observation that
most objects in a room are arranged on a 2D
ground plane, so can use a semantically-enriched
representation of scenes based on orthographic top-
down views. GRAINS [92] is a generative recursive
neural network with a variational auto-encoder
inspired by the work of Ref. [93]. In the latter work,
they developed a generative recursive auto-encoder for
learning hierarchical structures of 3D indoor scenes.
The work of Ref. [92] further enables generation
of a plausible 3D scene from a random vector.
Its auto-encoder performs scene object grouping
while encoding information about objects’ spatial
properties, and scene generation during decoding
which turns a randomly sampled code from the
learned distribution into a plausible indoor scene
hierarchy. Wu et al. [94] proposed a data-driven
method to automatically and efficiently generate floor
plans for residential buildings given only the boundary.
To do so, they created a large-scale dataset (RPLAN)
consisting of real floor plans from residential buildings.
A living-room-first strategy based on Refs. [95] and
[90] was used to determine room connections and
positions; it improves the plausibility of resulted floor
plans. An encoder–decoder network was then applied
to predict wall positions.
Functionality analysis for indoor models and scenes

using neural networks is an emerging research topic
in virtual reality and robotics. Hu et al. [97]
proposed a deep model to predict the functionality
of an isolated 3D object, and to generate possible
interaction contexts related to the object. The
method uses voxels to represent models and 3D-CNN
to build the networks. Yan et al. [98] presented
a recurrent neural network to predict parts and
motion from point clouds. In their work, point-
wise displacements for input shape are predicted by
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an interleaved LSTM-based encoder–decoder. To
complete the scene with existing 3D objects, while
considering possible interactions among them, a
localization and completion network is used [96] (see
Fig. 7). In this work, an omni-directional depth image
encoding a 360◦ field of view is used to regress the
positions for new objects. Using them, the system
predicts corresponding objects which fit the geometry
of related objects in the scene.
For outdoor scenes, deep learning based methods

tend to focus on terrain manipulation. Guérin et
al. [99] proposed an automatic terrain synthesis
pipeline driven by real world examples. Each terrain
synthesizer is a conditional generative adversarial
network. It takes a terrain sketch with visually
important features such as summits and valleys as
input, and generates the entire elevation of a terrain.
Since large training sets are required, they presented
a method to automatically extract sketches from
real world terrains, to avoid heavy labor needed for
artificial sketches. An erosion meta-simulation is also
trained to efficiently apply erosion to terrains in their
work. Zhang et al. [100] proposed an example-based
method to rapidly generate vegetation in outdoor
natural environments. The method utilizes a VGG-
network to learn the relationships between terrain
and vegetation distribution. They treat a 3D scene as

Fig. 7 Given a scene with furniture (a), each piece of
furniture is adorned with objects (b) by localizing and completing
possible interactions with it. Reproduced with permission from
Ref. [96], c© Institute of Electrical and Electronics Engineers 2019.

a combination of height maps and vegetation density
maps for CNN training. Once local information
has been extracted from the terrain and vegetation
distribution, an initial feature map of the target
vegetation distribution is produced, based on patch
matching and the vegetation density map. Finally
a forward neural network is applied to predict the
result.

3 Deep VR content analysis
In order to allow sophisticated interactions with VR
applications, semantics need to be extracted by deep
learning based approaches. On the other hand, to
improve the comfort of VR users while exploring or
making actions, the factors affecting VR adoption
need to be analyzed.

3.1 Detection and recognition
For VR content provided by real life images and
videos, object detection and recognition are essential,
to extract semantics that are very valuable. Both
are typical computer vision tasks, so can be handled
by deep learning methods. Nowadays, CNNs are
publicly considered to be one of the most effective
and powerful tools in computer vision. It is thus a
natural idea to use CNNs to solve problems of object
detection and recognition in panoramic images and
video. However, the distortion caused by sphere-to-
plane projection can reduce the performance of CNNs
in 360◦ image and video. To alleviate the distortion
when directly applying object detection methods, two
types of strategies are used. One is to change the
form of the kernel used in the CNN to adapt to
the equirectangular representation. The other is to
change the representation of the panoramic image or
to augment the input with semantics.
To adapt the CNN structure to equirectangular

form, Su and Grauman [101] proposed a method
called SphConv, which leverages the CNN to extract
features on 360◦ image or video. It improves both
efficiency and accuracy by dynamically adapting the
kernels’ sizes when performing convolution operations
on equirectangular images. However, it cannot
achieve kernel parameter sharing and may suffer from
model bloat. Zhang et al. [102] introduced a new type
of spherical CNN. It defines the kernel on a spherical
crown, which allows kernel parameters to be shared.
Also, taking into account the common format used



12 M. Wang, X.-Q. Lyu, Y.-J. Li, et al.

for 360◦ videos, they proposed a method to re-sample
kernels. They then proposed a spherical U-Net for
saliency detection in 360◦ videos. Coors et al. [103]
presented SphereNet, a novel framework aimed at
encoding rotation invariance into CNN architectures,
improving performance in detection and classification
tasks in omnidirectional images. To achieve this,
sampling grid locations for convolutional kernels are
adjusted based on the geometry of the spherical image
representation. The connectivity of spherical images
is retained by SphereNet. Li et al. [104] proposed
a baseline model, DDS, which includes a distortion-
adaptive module and a multi-scale context module
based on ResNet-50 to deal with detection problems
in images suffering from projection distortion, large-
scale complex scenes, and small salient objects. Su
and Grauman [105] presented the kernel transformer
network (KTN) which adapts a source CNN model
trained on perspective images to 360◦ images by
learning a relationship between two different kinds
of kernels: an input kernel of the source CNN is
transformed to suit 360◦ images through a learned
function (see Fig. 8). Once the function has been
learned, the KTN can be applied to multiple source
CNNs with the same architecture without the need
for retraining.
Transforming the spherical signals to the 2D

domain can be better than previous strategies in

Fig. 8 Kernel transformer networks (KTN) for compact spherical
convolution in 360◦ images. KTNs consist of row dependent channel-
wise projections where the kernel is resized to the target size, and depth
separable convolution blocks. A source kernel K and an angle θ are fed
into the KTN to generate the output kernel Kθ for convolution with
the image in equirectangular projection. Reproduced with permission
from Ref. [105], c© Institute of Electrical and Electronics Engineers
2019.

some situations, as it can utilize well trained CNN
models defined over the normal 2D domain. Monroy
et al. [106] presented an architectural extension
for CNNs to work on omni-directional images by
subdividing the omni-directional image into equally-
sized undistorted patches by rendering six viewing
frustums. By recording the spherical coordinates for
each pixel in these patches, they are able to project
all pixels to the equirectangular representation, using
a CNN to combine the results from the six patches.
Cheng et al. [107] proposed a cube padding method
which renders panoramic image on cubemaps to avoid
distortion. It mitigates disconnectivity between faces
by padding (see Fig. 9). Cube padding is feasible
in almost all CNN structures and performs better
in object detection and recognition tasks. Yang et
al. [108] proposed a multi-projection YOLO method
which is a variant of the original YOLO detector
[109]. It adopts stereographic projection to preserve
linear structures, so can reduce the severe geometric
distortions caused by equirectangular projection.
To further alleviate the impact of distortion near
image boundaries, they adopted four sub-windows
with an overlap of 90◦ and used soft selection
to select detection results from multiple predicted
windows. Lee et al. [110] presented a spherical
polyhedron-based representation of omni-directional
images (SpherePHD) which aims to overcome shape
distortion in the equirectangular representation, and
discontinuity at image boundaries of the cubemap
representation.

Fig. 9 Saliency detection in 360◦ video using cube padding. (a)
A frame in equirectangular projection. (b) Cubemap projection
with cube padding (CP) to mitigate distortion and cuts at image
boundaries. High-quality saliency maps are predicted on the cubemap.
(c) Predicted equirectangular saliency map. (d) Desirable NFOVs
obtained from the high-quality saliency map. Reproduced with
permission from Ref. [107], c© Institute of Electrical and Electronics
Engineers 2018.
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Beyond the object level, neural networks have
been proposed to determine scene-level geometry and
layout from panoramas. LayoutNet learns to predict
room layout from panorama images [111]. Assisted
with Manhattan lines, the model decomposes the
task into boundary map prediction and corner map
prediction. The final predicted layout is reconstructed
with Manhattan constraints. Later, HorizonNet was
proposed to reconstruct 3D scene layout with a 1D
representation that encodes the whole-room layout
for a panoramic scene [112]. In this framework,
recurrent neural networks are used to capture global
information, and the positions of the floor–wall
and ceiling–wall boundaries; the existence of wall–
wall boundaries are encoded in the proposed 1D
representation. At the same time, DuLa-Net was
proposed with a two-branch network to analyze
an input panorama in panorama-view and ceiling-
view projections, and to fuse the learned features
for the final 3D layout projection [113]. With the
proposed dual-projection architecture, complex layout
shapes beyond cuboids and L-shapes can be correctly
reconstructed from a single panorama.

3.2 Cybersickness analysis
When a user experiences a virtual environment,
cybersickness may occur, which causes symptoms
similar to motion sickness. The most common
symptoms include discomfort, headache, queasiness,
nausea, vomiting, pallor, fatigue, drowsiness,
disorientation, and apathy [115, 116]. Disequilibrium
between organs of the human body and the
visual information acquired by the eyes may cause
cybersickness. Additionally, screen resolution, size of
field of view, and latency play a role in cybersickness,
too.
Crosstalk between the sensory and cognitive

systems is the main factor in cybersickness. It
is difficult to quantify cybersickness by measuring
sensory and cognitive systems objectively. Traditional
cybersickness evaluation methods usually collect
answers using questionnaires but lack objectivity.
Analyzing electroencephalogram (EEG) data is
another possible approach. Traditional machine
learning algorithms (e.g., support vector machines)
have proved effective in obtaining highly accurate
measurements (up to 95% accuracy [117]) for complex
EEG data. Deep learning is also a powerful tool in
helping to solve the problem, due to the maturity

of emotion recognition and pattern analysis high
performance analysis of EEG data. Jeong et al. [118]
compared DNN and CNN in measuring cybersickness
from EGG data. They also proposed a data pre-
processing method for recommending an optimal
weight set for EGG data to give the highest accuracy
when learning from it with deep models. In addition,
Lee et al. [119] proposed a method using 3D CNN to
predict the degree of motion sickness when watching
a 360◦ stereoscopic video. It takes the user’s eye
movements, motion velocity, and video depth as
features. Wang et al. [120] proposed an LSTM
model using dynamic information from normal-state
posture signals to measure and quantize the amount
of VR sickness in real time while allowing adaptive
interactions in virtual environments. Kim et al. [114]
developed an EEG-driven VR cybersickness level
predict prediction model. It uses CNNs to encode
a cognitive representation of the EEG spectrogram
and an RNN-based model to predict cybersickness
by learning from VR video sequences (see Fig. 10).
Hu et al. [121] presented a computational model
which can predict the discomfort level in terms of a
given scene and camera trajectory. It is combined
with a path planning method to optimize the camera
trajectory to mitigate perceptual sickness.

4 Contactless interaction with deep
learning

Aiming to improve the flexibility of content
exploration, modern VR systems attempt to allow
natural interactions between humans and the VR
environment. In this survey, we review recent works
on human pose estimation, hand gesture recognition,
and gaze prediction, to which deep learning approaches
have been applied.

4.1 Human pose estimation
Human pose estimation is a fundamental building
block for methods translating natural body move-
ments into functional actions in a VR environment. It
focuses on estimation the locations of body parts and
their connections [122]. Human pose estimation may
involve 2D pose estimation or 3D pose estimation
where human anatomical keypoints or parts are
represented in 2D or 3D respectively.
There are two types of application scenario in

2D pose estimation: single-person pose estimation
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Fig. 10 Cybersickness learning predictor. Input VR video is fed into a CNN–RNN network to extract features which the fully connected layer
represents as cognitive features. These are concatenated with visual features to predict cybersickness level. Reproduced with permission from
Ref. [114], c© Institute of Electrical and Electronics Engineers 2019.

and multi-person pose estimation. For 2D single-
person pose estimation from a single image, Toshev
and Szegedy [123] proposed DeepPose, the first deep
neural network for human pose estimation. Newell et
al. [124] proposed a “stacked hourglass” convolutional
network architecture based on successive steps of
pooling and upsampling for 2D human pose estimation.
For multi-person pose estimation, Pishchulin et
al. [125] proposed the DeepCut algorithm that
jointly solves single-person and multi-person 2D
articulated human pose estimation from a single
image by inferring the number of people in the image,
and then subsequently estimates their body poses
using CNN-based part detectors. Cao et al. [126]
presented a method to detect 2D multi-person poses
in a single image. Their method uses non-parametric
part affinity fields (PAFs) to learn to associate body
parts with individuals. Fang et al. [127] proposed
a regional multi-person pose estimation framework
consisting of a symmetric spatial transformer network,
a parametric pose non maximum-suppression module,
and a pose-guided proposal generator, to handle
cases with inaccurate and redundant detection results.
Jin et al. [128] proposed a framework consisting of
SpatialNet and TemporalNet for multi-person pose
estimation and tracking. SpatialNet detects body
parts and associates part-level data to each frame.
TemporalNet tracks trajectories of human instances
across consecutive frames.
For 3D pose estimation, Bogo et al. [129] proposed

the first deep learning-based method, “Keep it SMPL”.

This method uses a single unconstrained image as
input to automatically estimate the 3D pose of a
human body as well as its 3D shape. Initially it uses
DeepCut [125] to predict 2D body joint locations,
and then fits a skinned multi-person linear model
(SMPL) [130] from the 2D joints by minimizing errors
between the projected 3D model joints and detected
2D joints. Mehta et al. [131] presented VNect, the
first real-time model to capture the full 3D skeletal
pose of a person from a single RGB image. Their
method combines a CNN-based pose regressor with
kinematic skeleton fitting; it offers stable, temporally
consistent results. Tome et al. [132] proposed a CNN
architecture to jointly solve 2D landmark detection
and full 3D pose estimation from a single image. More
recently, RepNet was proposed with an adversarial
training process based on 2D re-projection [133]
to tackle the overfitting problem. It was trained
in a weakly supervised manner without 2D to 3D
correspondences and camera parameters. Cheng et
al. [134] proposed a method to handle occlusion
by filtering out unreliable estimates of occluded
keypoints when training their 2D and 3D temporal
convolutional networks.

4.2 Hand gesture recognition
Hand gestures are postures or movements of the
user’s hands, and provide a common and natural
way to interact with VR environments. Recognizing
hand gestures efficiently and accurately is a critical
component in contactless VR interaction.
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Traditionally, it is challenging to accurately
estimate hand poses, as the hand has many degrees of
freedom, and fingers may occlude each other. It can
also be cost-consuming to obtain highly accurate
hand pose signals. With recent developments in
deep learning, researchers have focused on solving
the pose estimation problem by learning regression
mapping functions between image appearance and
hand pose representations. Oberweger et al. [135]
compared different CNN architectures for 3D hand
joint localization from a depth map, then introduced
a constrained prior hand model and applied a joint-
specific refinement stage to improve joint localization
accuracy while reducing computational time. Zhou
et al. [136] proposed a deep model that confirms
the geometric validity of pose prediction by using a
forward kinematics-based layer, which fully exploits
prior knowledge in a generative model for hand
geometry estimation. Pavllo et al. [137] proposed a
real-time neural network that uses a motion capture
system containing cameras and active markers to
track hands and fingers. It copes well with occlusion
and completely reconstructs hand posture. Chalasani
et al. [138] proposed a method to solve the gesture
recognition problem from a sequence of egocentric
images. It consists of an ego-hand encoder network
and an RNN; the encoder network finds ego-hand
features and the RNN distinguishes temporally
discriminative features. Ge et al. [139] proposed
a graph CNN-based method to reconstruct the 3D
shape and pose of a hand. A large-scale synthetic
3D hand shape and pose dataset, and a small-scale
real-life hand dataset, were both introduced to train
the network in a weakly-supervised manner.

4.3 Gaze prediction
Understanding where a user is looking, in a virtual
environment, greatly benefits VR content creation
from both commercial and technological perspectives.
There are two main types of gaze prediction
applications: one predicts gaze fixations in 360◦ image
and video content, and the other predicts 3D gaze
information from user input, e.g., iris contours or user
facial images.
Much of the gaze prediction literature for 360◦

video focuses on VR content and history scanpath
analysis to predict future gaze points. Deep learning
methods can effectively extract features from video
and predict gaze. Soccini [140] proposed a deep CNN

model using image features and head movements
as input to infer 2D coordinates of gaze points in
the imaging plane. Xu et al. [141] fed images
and corresponding saliency maps into a CNN and
used LSTMs to encode the history scanpath as
features. They then used these features to predict
gaze displacements between successive gaze points.
Gaze prediction methods based on user input can

be categorized as model-based and appearance-based
approaches [142]. Model-based methods fit geometric
eye models, detecting eye features using dedicated
devices. However, the working distance between the
user and the camera is limited. Appearance-based
methods learn non-linear mappings between user
input and corresponding gaze points. Deep learning-
based methods can more effectively model the non-
linear gaze prediction mapping than traditional
methods. Lu et al. [143] proposed a model-driven
method called synthetic iris appearance fitting
(SIAF). It analyzes iris shape to predict 3D gaze
direction. Cheng et al. [144] proposed an asymmetric
regression-evaluation network architecture (ARE-Net)
to estimate eye gaze. A sub-module of the asymmetric
regression network (AR-Net) uses a new asymmetric
strategy to estimate both eyes’ 3D gaze directions,
and a sub-module of the evaluation network (E-
Net) evaluates the two eyes’ performance to adjust
the strategy adaptively during the optimization
process. Furthermore, Cheng et al. [142] constructed
a coarse-to-fine adaptive network named CA-Net.
This architecture uses face images to estimate gaze
direction, and then predicts corresponding residuals
from eye images to refine gaze direction (see Fig. 11).
Xiong et al. [145] provided mixed effects neural
networks (MeNets) which adapts the mixed effects
strategy from statistics to a DNN architecture for gaze
estimation from eye images. It improves prediction
accuracy by 10%–20% on many publicly available
benchmarks.

5 Deep VR content manipulation
In recent visual media content manipulation research,
we have experienced a paradigm shift from axiomatic
modeling to data-driven modeling based on deep
neural networks. The unprecedented performance
of deep architectures has caused them to be widely
used in content manipulation for VR applications.
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Fig. 11 Coarse-to-fine gaze prediction. Coarse-grained features are
extracted from face images to estimate basic gaze direction gb while
fine-grained features are extracted from eye images to estimate gaze
residual gr . gr is used to refine gb to give the output gaze direction g.
Reproduced with permission from Ref. [142], c© Association for the
Advancement of Artificial Intelligence 2020.

5.1 VR image and video editing
Generative adversarial networks (GANs) have been
successfully applied to many image and video editing
applications, e.g., image-to-image translation and
inpainting. The image-to-image translation task
converts the input from one domain (e.g., an edge
map or segmentation map) to another (e.g., a photo-
realistic image). Deep models such as pix2pix [146],
CycleGAN [147], and StarGAN [148] were invented
for such tasks. The image inpainting task, also known
as image completion, aims to complete content inside
missing regions of an image. Yu et al. [149] proposed
a coarse-to-fine framework for inpainting large missing
regions in an image using GANs with contextual
attention. Li et al. [150] and Wu et al. [151] proposed
deep generative models to restore occluded parts of an
input portrait based on GANs. A survey of GANs in
image synthesis and editing is provided in Ref. [152].
The outstanding improvements in these generative

tasks has led to widespread interest in deep
convolutional networks for VR image/video editing.
In order to relieve viewers from frequently selecting
view pilots while watching a 360◦ sports video, Hu
et al. [153] proposed a deep learning-based agent,
Deep 360 Pilot, for piloting through 360◦ sports
videos automatically by using an RNN to choose
the main subject to view and to regress a viewing
angle shift for next move according to the chosen
subject and previous viewing angle path: see Fig. 12.
Lai et al. [154] presented a system to generate
a normal field-of-view (NFOV) hyperlapse from a
panoramic video. It uses fully convolutional networks
to obtain initial semantic labels for each frame
independently. To select valuable normal field-of-
view segments from a 360◦ video and summarize it as

Fig. 12 Deep 360 Pilot for NFOV selection in 360◦ sports
video. (a) Three overlapping panoramic frames sampled from a 360◦

skateboarding video with two skateboarders. The proposed “Deep
360 Pilot” selects a viewing angle, and NFOV center. (b) NFOV from
a viewer’s perspective. Reproduced with permission from Ref. [153],
c© Institute of Electrical and Electronics Engineers 2017.

a concise and informative subset of subshots spatially
and temporally, Yu et al. [155] proposed a deep
ranking model, composition view score. It produces
a spherical score map for 360◦ video segments and
uses a sliding window kernel to decide which view is
suitable for highlighting. Lee et al. [156] proposed
a past–future memory network with two external
memories. The memories are used for storing
previously chosen subshots and future candidate
subshots’ embeddings for temporal summarization of
360◦ videos.

5.2 Image and video enhancement with HMDs
Head-mounted displays (HMDs) block the real
world from the viewer to provide an immersive
experience of the virtual environment. However,
when wearing such a device, the eye region of user’s
face is partially occluded. This partial face reduces
immersion in teleconferencing, or other VR education
and entertainment applications. Thies et al. [158]
proposed the FaceVR system, a novel image-based
method that performs real-time facial motion capture
of an actor mounted with an HMD to enable VR
teleconferencing based on self-reenactment. A new
data-driven approach based on random ferns for
real-time eye-gaze tracking is also presented in this
work. Wang et al. [157] proposed an automatic
face image completion solution using GANs. It
learns to complete the HMD occluded region by
referring to an occlusion-free image of the same person
(see Fig. 13). Recently, real-time image-to-image
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Fig. 13 Facial image completion for HMD occlusion using with a
reference image. (a) Input photo with occluded region. (b) Reference
image. (c) Image completion result. Reproduced with permission from
Ref. [157], c© Institute of Electrical and Electronics Engineers 2019.

translation of virtual content for HMD experience
has been addressed. Nakano et al. [159] proposed a
system using GAN-based image-to-image translation
to change the appearance of one type of food into
another dynamically and interactively. This problem
successfully manipulates gustatory sensations of the
user (see Fig. 14).

5.3 Foveated rendering
The spatial acuity of the human visual system varies
across the retina, and is highest in the fovea, a small
region with enhanced spatial acuity near the center
of the retina [160]. Therefore, it is feasible to render
realistic scenes with an acceptable computational cost
in a spatially adaptive manner. Deep learning has
been adopted to solve this problem very recently.
The earlier traditional method was proposed by

Guenter et al. [161] whose system exploits foveation
by separating the scene to be rendered into three
nested eccentricity layers centered around the current
gaze point. The inner layer is rendered at the highest
resolution while peripheral layers are rendered at
progressively lower resolution. Its rendering quality

Fig. 14 GAN-based real-time food-to-food translation. Left: input
food images. Center: user with an HMD experiencing gustatory
manipulation. Right: translated food image examples. Reproduced
with permission from Ref. [159], c© Institute of Electrical and
Electronics Engineers 2019.

has been surpassed by the latest deep learning-based
system. Recently, Kaplanyan et al. [162] presented
a novel GAN-based method, DeepFovea, for foveated
rendering and video compression. DeepFovea is able
to reconstruct plausible peripheral video without
noticeable quality degradation. It only requires a
small fraction of color information provided by each
frame. Since realistic rendering needs a huge amount
of computation, DeepFovea can significantly reduce
its workload.

5.4 Face reenactment
Face reenactment has been widely used in the film
industry to animate virtual CG avatars in recent
years. Since real-time markerless facial performance
capture based on commodity sensors was invented
[164], research using this field for VR has been
increasing, and deep neural networks for automatic
high-fidelity facial appearance generation are being
investigated.
Face2Face [164] is a representative work for face

reenactment. It is a real-time system which just takes
monocular video as input and can manipulate the
facial expression of a target video driven by a source
actor. A novel image-based mouth synthesis approach
is used to generate a realistic mouth interior and a
sub-space deformation transfer technique inspired
by Sumner and Popović [165] was also proposed
in this paper. Although the method does not
utilize deep learning, it produces plausible results
and facilitates the development of face reenactment.
Later, Olszewski et al. [166] introduced a system
using deep convolutional networks to extract high-
fidelity expressions in real time. It is able to
produce realistic facial expressions and visual speech
animation. Their model learns a direct mapping
function that can transfer a high-dimensional image
to lower-dimensional animation controls for a rigged
3D character. The highly accurate lip and eye
motions enable applications like natural face-to-face
conversations. Suwajanakorn et al. [167] presented
a system for video synthesis from audio for the
region around the mouth. It first converts input
audio to a time-varying sparse mouth shape based
on RNN and learns the mapping from raw audio
features to mouth shape. It then synthesizes high-
quality mouth texture at each time instant and finally
composites generated photo-realistic mouth texture
into the mouth region of the target video. When
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synthesizing, their method borrows the rest of the
head and torso from other footage to make the head
motions appear natural and consistent with the input
speech. To keep structural consistency of faces in
face reenactment, Wu et al. [168] proposed a method
that first maps the source face onto a boundary
latent space, then transforms the source boundary to
adapt to the target boundary, and finally decodes the
transformed boundary to generate the reenacted face.
The Face Swapping GAN (FSGAN) was proposed to
swap and reenact faces in a subject agnostic manner
[169]. An RNN-based approach which adjusts for
pose and expression variations was proposed, assisted
by a face completion network and a face blending
network to generate realistic face swapping results.
In portrait video synthesis, GAN-based models

have shown their capability to encode essential
features of the input data and to restore photo-
realistic images. Geng et al. [170] introduced a
method based on a warp-guided generative model (wg-
GAN) for real-time photo-realistic facial animation
that closely matches the expressions in source frames.
The model first performs global 2D warps on the
target portrait photo with a set of control points
transferred from the motion parameters of the source
portrait. Since the global structural movements
of the facial expression can be well captured by
2D facial landmarks and preserved in 2D warps,
it then generates a per-pixel displacement map by
extracting the facial region and interpolating the
2D facial landmarks. Kim et al. [163] presented an
approach based on a conditional GAN to achieve
photo-realistic re-animation of portrait videos. The

proposed network takes synthetic renderings of a
parametric face model obtained by using a monocular
face reconstruction with both source video and target
video as input. It then automatically translates it
into a full-frame photo-realistic output video with
control of the target’s head pose, facial expression,
and eye motion (see Fig. 15). A space–time network
architecture that takes short sequences of conditioned
input frames of head and eye gaze is designed to keep
temporal stability. Later, Kim et al. [171] presented
a style-preserving visual dubbing approach based on
recurrent GANs; it modifies facial expressions of a
target actor to match the speech in a foreign language
while maintaining the style of the target actor.
Taking into consideration the idiosyncrasies and
demeanor of different people, the network captures
the spatio-temporal co-activation of facial expressions
of unsynchronized source and target videos. They
train their networks using cycle-consistency and
mouth expression losses in an unsupervised manner.
To generate the final results, they synthesize photo-
realistic video frames using a layered neural face
renderer.

6 Conclusions and future directions

The creation and exploration of virtual content in
VR is a fundamental research topic, which serves and
supports various applications utilizing an immersive
virtual environment. This paper has reviewed
representative deep learning works in VR content
creation and exploration mostly from the last five
years. We can see that deep neural networks are

Fig. 15 Deep video portrait architecture for face reenactment. The method enables a source actor to control a target video portrait in
terms of head pose, expression, etc. Left: a low-dimensional parametric representation of both videos is obtained using monocular face
reconstruction. Center: head pose, expression, and eye gaze are transferred in parameter space. Right: rendering the photo-realistic video
portrait of the target actor from input images. Obama video courtesy of the White House (public domain). Reproduced with permission from
Ref. [163], c© Association for Computing Machinery 2018.
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most utilized in VR content creation using real
world images and videos. They have been used
in almost all stages of the reconstruction process,
including raw image stitching, and 3D scene and
human reconstruction from monocular, stereo, and
RGB-D data. We have also reviewed deep neural
networks for VR content analysis, which contribute
to more natural interactions between users and their
VR environment; they include both understanding of
the VR environment and analysis of the user’s body
and actions. We wish to clarify that some research
fields in VR content exploration heavily dependent
on hardware have not been included in this survey,
e.g., haptic technology for VR.

6.1 Future research directions
Leveraging deep learning techniques in VR con-
stitutes a new research area which holds great
potential for further visual media research. Here,
we list some remaining challenges and open problems
for future research.
6.1.1 Motion parallax for dynamic 360 ◦ image and

video
Although several CNN-based view interpolation
methods have been proposed [29, 51, 58–60],
computing motion parallax for dynamic 360◦ video
is still challenging [28, 172, 173]. Scene geometry
estimation from casual photography is not accurate
enough for high-quality view synthesis and rendering.
Furthermore, dynamic objects in the scene can lead
to complex occlusions. Combining scene semantics,
object motion prediction, and view synthesis could
be a promising solution.
6.1.2 360◦ image and video synthesis with GANs
Image-to-image translation methods using GANs are
powerful tools for interactive face, body, object, and
natural scene synthesis. Compared to normal field-
of-view images, high-quality 360◦ images and videos
are rarer and more difficult to capture and create.
Fully automatic or interactive panoramic image and
video synthesis with semantics and guided examples
is required [21, 174]. Convolution kernels and neural
network architectures considering wide fields-of-view
are expected.
6.1.3 Human-centric scene functionality analysis
As discussed in Section 2, 3D scene functionality
analysis is a new research topic [96, 97]. Functionality-
aware shape modeling and scene analysis with

comprehensive understanding of scene semantics is
essential for VR applications. More importantly,
human behavior is a key factor for indoor
scene functionality processing. Combining human
behavior and object-to-object interaction is of great
importance. Due to the requirement of analyzing
local and global contexts of the scene, graph neural
networks [175] could be utilized to process large-scale
complex data.
6.1.4 Intelligent contactless interaction
Human interaction is deeply involved in VR
environments, and contactless user interaction
has gained much attention. Current contactless
interaction is based on gaze, gesture, or body pose
signals. However, most current research considers
such input signals separately. Gaze prediction in 3D
environments considering the semantics of the scene
has the potential to improve prediction accuracy. In
addition, combining gaze and gesture recognition
helps to better understand the user’s intent. More
complex interaction modes are expected in future VR
content exploration.
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[158] Thies, J.; Zollhöfer, M.; Stamminger, M.; Theobalt,
C.; Nießner, M. FaceVR: Real-time gaze-aware facial



VR content creation and exploration with deep learning: A survey 27

reenactment in virtual reality. ACM Transactions on
Graphics Vol. 37, No. 2, Article No. 25, 2018.

[159] Nakano, K.; Horita, D.; Sakata, N.; Kiyokawa, K.;
Yanai, K.; Narumi, T. DeepTaste: Augmented reality
gustatory manipulation with GAN-based real-time
food-to-food translation. In: Proceedings of the IEEE
International Symposium on Mixed and Augmented
Reality, 212–223, 2019.

[160] Levoy, M.; Whitaker, R. Gaze-directed volume
rendering. ACM SIGGRAPH Computer Graphics Vol.
24, No. 2, 217–223, 1990.

[161] Guenter, B.; Finch, M.; Drucker, S.; Tan, D.; Snyder,
J. Foveated 3D graphics. ACM Transactions on
Graphics Vol. 31, No. 6, Article No. 164, 2012.

[162] Kaplanyan, A. S.; Sochenov, A.; Leimkühler, T.;
Okunev, M.; Goodall, T.; Rufo, G. DeepFovea:
Neural reconstruction for foveated rendering and video
compression using learned statistics of natural videos.
ACM Transactions on Graphics Vol. 38, No. 6, Article
No. 212, 2019.

[163] Kim, H.; Carrido, P.; Tewari, A.; Xu, W.; Thies, J.;
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P.; Beeler, T.; Richardt, C.; Theobalt, C. Neural
style-preserving visual dubbing. ACM Transactions
on Graphics Vol. 38, No. 6, Article No. 178, 2019.

[172] Huang, J. W.; Chen, Z. L.; Ceylan, D.; Jin, H.
L. 6-DOF VR videos with a single 360-camera. In:
Proceedings of the IEEE Virtual Reality, 37–44, 2017.

[173] Serrano, A.; Kim, I.; Chen, Z. L.; DiVerdi, S.;
Gutierrez, D.; Hertzmann, A.; Masia, B. Motion
parallax for 360◦ RGBD video. IEEE Transactions
on Visualization and Computer Graphics Vol. 25, No.
5, 1817–1827, 2019.

[174] Park, T.; Liu, M.-Y.; Wang, T.-C.; Zhu,
J.-Y. Semantic image synthesis with spatially-
adaptive normalization. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, 2337–2346, 2019.

[175] Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P.
S. A comprehensive survey on graph neural networks.
arXiv preprint arXiv:1901.00596, 2019.

Miao Wang is an assistant professor
at the State Key Laboratory of
Virtual Reality Technology and Systems,
Research Institute for Frontier Science,
Beihang University, and Peng Cheng
Laboratory, China. He received his
Ph.D. degree from Tsinghua University
in 2016. In 2013–2014, he visited the

Visual Computing Group in Cardiff University as a joint
Ph.D. student. In 2016–2018, he worked as a postdoc
researcher at Tsinghua University. His research interests
lie in virtual reality and computer graphics, with particular
focus on content creation for virtual reality.

Xu-Quan Lyu is a master student with
the State Key Laboratory of Virtual
Reality Technology and Systems, School
of Computer Science and Engineering,
Beihang University, China. His research
interests include virtual reality and
augmented reality.



28 M. Wang, X.-Q. Lyu, Y.-J. Li, et al.

Yi-Jun Li is a Ph.D. student with
the State Key Laboratory of Virtual
Reality Technology and System, School
of Computer Science and Engineering,
Beihang University, China. His
research interests are virtual reality,
with particular focus on virtual scene
navigation and 360◦ image and video

processing.

Fang-Lue Zhang is currently a lecturer
at Victoria University of Wellington,
New Zealand. He received his bachelor
degree from Zhejiang University in 2009,
and his doctoral degree from Tsinghua
University in 2015. His research
interests include image and video editing,
computer vision, and computer graphics.

He is a member of IEEE and ACM. He received a Victoria
Early-Career Research Excellence Award in 2019.

Open Access This article is licensed under a Creative
Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduc-
tion in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link
to the Creative Commons licence, and indicate if changes
were made.

The images or other third party material in this article are
included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission
directly from the copyright holder.

To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Other papers from this open access journal are available
free of charge from http://www.springer.com/journal/41095.
To submit a manuscript, please go to https://www.
editorialmanager.com/cvmj.


